
1

Unranking Algorithms for Combinatorial Structures
X. Molinero and J. Vives

Abstract—We present an implementation of some unlabeled
and labeled unranking algorithms for the open-source algebraic
combinatorics package MUPAD-COMBINAT of the computer
algebra system MUPAD. We have compared our implementation
with the previous versions. All our algorithms improve the
previous ones with respect to the required CPU time. Moreover,
we have also developed unranking algorithms applied to some
unlabeled and labeled admissible operators that are not still im-
plemented in the package MUPAD-COMBINAT. These algorithms
are also able to develop some combinatorial structures useful to
generate molecules applied to chemistry and influence graphs
applied to game theory and social networks, among other topics.

Index Terms—Unranking Algorithms for Combinatorial Struc-
tures, package MUPAD-COMBINAT, Generating Molecules, Gen-
erating Influence Games.

I. INTRODUCTION

The problem of unranking asks for the generation of the ith
combinatorial object of size n in some combinatorial class A,
according to some well defined order among the objects of
size n of the class. Efficient unranking algorithms have been
devised for many different combinatorial classes, like binary
and Cayley trees, Dyck paths, permutations, strings or integer
partitions, but most of the work in this area concentrates
in efficient algorithms for particular classes, whereas we
aim at generic algorithms that apply to a broad family of
combinatorial classes. The problem of unranking is intimately
related with its converse, the ranking problem, as well as with
the problems of random generation and exhaustive generation
of all combinatorial objects of a given size [23], [12].

The ranking problem is the following: Given a combinato-
rial class and an object from that class, compute the rank of
the given object, according to some previously fixed order.

The random generation problem consists in generating a
combinatorial object of a given combinatorial class and size
uniformly at random.

The unranking problem generates a combinatorial object
whose rank and size are given, according to some fixed order.

The iteration or exhaustive generation gives all objects
of a given combinatorial class and size, according to some
previously fixed order.

The interest of this whole subject is witnessed by the vast
number of research papers and books that has appeared in over
five decades (see, for instance, [34], [19], [15], [14], [18], [35],
[17], [27], [26], [28], [6]).

X. Molinero is with the Department of Applied Mathematics III,
Universitat Politècnica de Catalunya, E-08240 Manresa, SPAIN. E-mail:
xavier.molinero@upc.edu. X. Molinero was partially funded by grant
MTM2012-34426/FEDER of the ”Spanish Economy and Competitiveness
Ministry”.

J. Vives is with the Department of Design and Programming of Electronic
Systems, Universitat Politècnica de Catalunya, E-08240 Manresa, SPAIN. E-
mail: jvives@epsem.upc.edu.

[23], [21], [20] designed generic unranking algorithms for a
large family of (unlabeled and labeled) combinatorial classes,
namely, those which can be inductively built from the basic
ε-class (a class which contains only one object of size 0),
atomic classes (classes that contain only one object of size 1 or
atom) and a collection of admissible combinatorial operators:
disjoint unions, products, sequence, set, cycles, etc. Now
we use such techniques to implement those algorithms in
MUPAD [4], [25]. In the open-source algebraic combinatorics
package MUPAD-COMBINAT [2] for the computer algebra
system MUPAD there are implemented the unranking for
some admissible combinatorial operators. First, we have im-
proved such implementation for unlabeled unions and products
(and sequences). Afterwards, we have also implemented other
operators as unlabeled sets and powersets (with and without
restrictions), and labeled unions, products, sequences and sets
(with and without restrictions if it is possible) and cycles.

The paper is organized as follows. In Section II we
briefly review basic definitions and concepts, the unranking
algorithms and the theoretical analysis of their performance.
In Section III, we compare the required CPU time of our
implementation with the required CPU time of the current
implementation in the package MUPAD-COMBINAT of the
computer algebra system MUPAD. Section IV establishes our
conclusions and future work.

Finally, Appendix presents the specification of our imple-
mentation and sketches some details about how it works.

II. PRELIMINARIES

The goal of this paper is to generate efficient unranking
algorithms of combinatorial structures in the computer alge-
bra system MUPAD. All these algorithms require to count
how many objects of each size there are, that is, given a
specification of a class and a size, we need to compute the
number of objects with the given size. Hence, we will only
deal with (some of) the so-called admissible combinatorial
classes [10], [11]. Those are constructed from admissible
operators, operations over classes that yield new classes, such
that the number of objects of a given size in the new class
can be computed from the number of objects of the same or
smaller sizes in the constituent (sub)classes. In this paper we
essentially just consider unlabeled objects (those whose atoms
are indistinguishable1) built from these admissible combina-
torial operators. However, similar algorithms have also been
implemented for labeled objects.

For both labeled and unlabeled classes, the finite specifica-
tions are generated from the ε-class, atomic classes (undistin-
guishable for unlabeled objects and distinguishable for labeled

1On the contrary, each of the n atoms of a labeled object of size n bears
a distinct label drawn from the numbers 1 to the size of the given object.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 110

Unlabeled class Specification
Binary trees B = Z + B × B

Unary-binary trees or
Motzkin trees M = Z + Z ×M+ Z ×M×M

Integer partitions P = Set(Seq(Z, card ≥ 1))
Integer compositions C = Seq(Set(Z, card ≥ 1))

Non-ordered rooted trees or
Rooted unlabeled trees T = Z × Set(T)

Binary sequences A = Seq(Z + Z)
Non plane ternary trees D = Z + Set(D, card=3)

Integer partitions with
distinct parts E = PowerSet(Seq(Z, card≥1))

Necklaces B = Cycle(Set(Z, card≥1))

Fig. 1. Examples of unlabeled classes and their specifications

Labeled class Specification
Binary plane trees B = Z + B ? B

General plane trees G = Z ? Seq(G)
Set partitions P = Set(Set(Z, card ≥ 1))

Non-plane binary trees D = Z + Set(D, card = 2)
Non-plane ternary trees E = Z + Set(E , card = 3)

Hierarchies J = Z + Set(J , card ≥ 2)
3-balanced hierarchies I = Set(Set(Set(Z, card ≥ 1), card ≥ 1))

Surjections V = Seq(Set(Z, card ≥ 1))
Cayley (Non-plane) trees T = Z ? Set(T)

Functional graphs F = Set(Cycle(T))

Fig. 2. Examples of labeled classes and their specifications

objects), and combinatorial operators including disjoint union
(’+’), Cartesian unlabeled product (’×’), labeled product (’?’),
sequence (’Seq’), powerset (’PowerSet’), set (’Set’)2, cycle
(’Cycle’) and substitution (’Subst’), and sequence, powerset,
set and cycle with restricted cardinality. Figures 1 and 2 gives
a few examples of unlabeled and labeled admissible classes,
respectively.

For the rest of this paper, we will use calligraphic uppercase
letters to denote classes: A, B, C, Given a class A and a
size n, An will denote the subset of objects of size n in A.

The order ≺Cn among the objects of size n for a class
C = A + B is naturally defined by γ ≺Cn γ′ if both γ and
γ′ belong to the same class (either An or Bn) and γ ≺ γ′

within their class, or if γ ∈ An and γ′ ∈ Bn. It is then
clear that although A + B and B + A are isomorphic (“the
same class”), these two specifications induce quite different
orders. The unranking algorithm for disjoint unions compares
the given rank with the cardinality of An to decide if the
sought object belongs to A or to B and then solves the problem
by recursively calling the unranking on whatever class (A or
B) is appropriate.

For Cartesian products the order in Cn = (A×B)n depends
on whether γ = (α, β) and γ′ = (α′, β′) have first components
of the same size. If |α| = |α′| = j then we have γ ≺Cn γ′ if
α ≺Aj

α′ or α = α′ and β ≺Bn−j
β′. But when |α| 6= |α′|, we

must provide a criterion to order γ and γ′. The lexicographic
order stems from the specification

Cn = A0 × Bn +A1 × Bn−1 + . . .+An × B0,

in other words, the smaller object is that with smaller first
component. On the other hand, the boustrophedonic order is

2Also denoted by ’multisets’ (MultiSet) to emphasize that repetition is
allowed.

Z

Z

Z Z

Z

Z Z

Z Z Z Z Z Z

Z Z

Z

Z Z

Z

Z

(a) Lexicographic order

Z

Z

Z Z

Z

Z Z

Z Z

Z Z

Z

Z Z

Z

Z

Z Z Z Z

(b) Boustrophedonic order

Fig. 2. Binary trees of size 4.

induced by the specification

Cn = A0 × Bn +An × B0 +A1 × Bn−1+
An−1 × B1 +A2 × Bn−2 +An−2 × B2 + . . . ,

in other words, we consider that the smaller pairs of total size
n are those whose A-component has size 0, then those with
A-component of size n, then those with A-component of size
1, and so on. Figure II shows the lists of unlabeled binary
trees of size 4 in lexicographic (a) and boustrophedonic order
(b).

Of course, other orders are also possible, but they either do
not help improving the performance of unranking or they are
too complex to be useful or applied.

For sequences we use the natural isomorphic from unlabeled
and labeled union and product:

Seq(A) = ε +A× Seq(A)

and
Seq(A) = ε +A ? Seq(A),

respectively.
On the other hand, for unlabeled powersets, among some

natural orders (see [21], [23]) we can choose

PowerSet(A) = ε +⋃
n>0

⋃n
j=1

⋃1
k=n÷j

(
PowerSet(Aj , card= k)×

PowerSetn−kj(A>j)
)

where

PowerSet(Aj , card= k) =
⋃
α∈Aj

(
α×

PowerSet(A(�α)
j , card= k − 1)

)
,

being A(�α) = {α′ ∈ A : α′ � α}, and PowerSet(A>j)
is a powerset with A-components of size at least equal to
j + 1. Other orders described in [21], [23] do not change
the complexity and they could also be easily adapted to our
implementation.

For unlabeled sets we have analogous isomorphisms but
allowing repetitions.

On the other hand, for labeled sets and cycles see the
isomorphisms described with the so-called boxed product
in [23].

The theoretical performance of these unranking algorithms
is summarized in [23], [20].

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 111

Theorem 1: The worst-case time complexity of unranking
for objects of size n in any admissible unlabeled or labeled
class A using lexicographic ordering is of O(n2) arithmetic
operations.

Theorem 2: The worst-case time complexity of unranking
for objects of size n in any admissible unlabeled or labeled
class A using boustrophedonic ordering is of O(n log n)
arithmetic operations.

III. OUR IMPLEMENTATION V.S. MUPAD-COMBINAT
IMPLEMENTATION

In this section we compare our implementation3 for unrank-
ing in MUPAD with the current implementation of the package
MUPAD-COMBINAT(using MUPAD Pro 4.0). All our experi-
ments run under Linux in a AMD64X2 4400 at 2.2 GHz with
4 Gb of RAM, and they use the basic facilities for counting
already provided by the package MUPAD-COMBINAT.

For instance, the interface for binary trees has the following
inputs:

spec := {B = Union(Z, Prod(B, B)),};
p1 := combinat::

decomposableObjects(spec,
Lexi/Bous);

p1::unrank(rank, size);

where spec is the specification4, Lexi or Bous forces
the lexicographic or boustrophedonic order, respectively, and
rank and size are the considered rank and size, respectively.
Thus, the following commands provide all binary trees of size
8 in lexicographic order:

spec := {B = Union(Z, Prod(B, B))};
p1 := combinat::

decomposableObjects(spec, Lexi);
for i from 0 to p1::count(8) - 1 do

p1::unrank(i, 8);
end_for

Notice that, in general, p1::count(size) returns the
number of objects of p1 with size size.

The selected collection for our experiments are two unla-
beled classical classes: binary trees (B = Z + B × B) and,
unary-binary trees or Motzkin trees (M = Z+Z×M+Z×
M×M).

Essentially, we have used two techniques in our implementa-
tion. First, we have appropriately used the command option
remember. Second, we have also used some pre–computed
tables (using dichotomic search among other techniques) to
store the counting of each class and size considered. More-
over, the access to the indices of such tables is substantially
faster than the access to the indices in the previous version
established in the command count of MUPAD. Note that to
count the number of objects of a given size and class we have
used ordinary and exponential generating functions (o.g.f. and
e.g.f) for unlabeled and labeled classes with the relation given
in Tables I and II, respectively, where the coeficient of zn

gives the number of objects of size n in the corresponding
class.

3It is available on request from the first author.
4The first class defined in the specification is the considered class (B in

this case).

Class Ordinary Gen. Func.
ε (empty class) 1

Z (Atomic class) Z

A+ B A(z) +B(z)

A× B A(z) ·B(z)

Seq(A) 1
1−A(z)

PowerSet(A) exp

(∑
n>0

(−1)n−1 A(zn)
n

)

Set(A) exp

(∑
n>0

A(zn)
n

)
Cycle(A)

∑
n>0

φ(n)
n

log
(

1
1−A(zn)

)
Subst(A,B) A(B(z))

TABLE I
RELATION OF ORDINARY GENERATING FUNCTIONS FOR COUNTING THE

NUMBER OF OBJECTS OF A SPECIFIC SIZE AND AN UNLABELED
ADMISSIBLE COMBINATORIAL CLASS.

Class Exponential Gen. Func.
ε (empty class) 1

Zi (Atomic class) Z

A+ B A(z) +B(z)

A ? B A(z) ·B(z)

Seq(A) 1
1−A(z)

Set(A) exp(A(z))

Cycle(A) log
(

1
1−A(z)

)
Subst(A,B) A(B(z))

TABLE II
RELATION OF EXPONENTIAL GENERATING FUNCTIONS FOR COUNTING

THE NUMBER OF OBJECTS OF A SPECIFIC SIZE AND A LABELED
ADMISSIBLE COMBINATORIAL CLASS.

Next, Tables III and IV show the improvement of the
average CPU time (in milliseconds) for unlabeled binary trees
and for unlabeled Motzkin trees. We have pre–computed the
counting tables and, afterwards, we have generated 10000
random objects of the considered class and size. τT is our
average time required to unrank a random rank of the con-
sidered class and size, τ ′T is MUPAD-COMBINAT average
time required to unrank a random rank of the considered class
and size, and ρ is the ratio τT /τ

′
T . For any case, it looks as

the improvements tend to be stable when the size n increase.
For lexicographic binary trees it approaches to ρ = 0.33, for
Boustrophedonic binary trees it approaches to ρ = 0.40, for
lexicographic Motzkin trees it approaches to ρ = 0.28, and
for Boustrophedonic Motzkin trees it approaches to ρ = 0.41.
Thus, all results are satisfactorily better. Note that even the
pre–computed tables require some CPU time, the average CPU
time (when the number of generated objects increase) of our
implementation substantially improves the previous one. We
have meaningfully improved the average CPU time required
to generate a random unranking: In lexicographic order, our
implementation spends about 30% of the CPU time of the

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 112

Lexicographic order Boustrophedonic order
Size τT τ ′T ρ

25 1.24 4.55 0.27
50 3.63 11.95 0.30
75 6.08 20.17 0.30

100 9.27 29.65 0.31
125 12.46 39.98 0.31
150 16.54 51.73 0.31
175 21.37 66.16 0.32
200 26.85 79.93 0.33

Size τT τ ′T ρ
25 0.90 2.95 0.30
50 2.50 6.52 0.38
75 4.27 10.24 0.41

100 6.20 13.97 0.44
125 6.99 17.91 0.39
150 8.39 20.80 0.40
175 9.67 24.90 0.38
200 11.63 28.87 0.40

TABLE III
AVERAGE CPU TIME (IN MILLISECONDS) FOR BINARY TREES,
B=Z+B×B. THE CPU TIME REQUIRED TO CALCULATE THE

PRE–COMPUTED TABLES IN OUR UNRANKING IS 380 MILLISECONDS.

Lexicographic order Boustrophedonic order
Size τT τ ′T ρ

25 1.12 3.24 0.34
50 2.60 9.33 0.27
75 4.81 16.61 0.28

100 7.18 25.72 0.27
125 9.65 34.27 0.28
150 12.28 42.57 0.28
175 15.42 54.44 0.28
200 18.83 67.08 0.28

Size τT τ ′T ρ
25 1.06 2.57 0.41
50 2.71 5.75 0.47
75 4.19 9.74 0.43

100 5.95 13.76 0.43
125 8.01 17.66 0.45
150 9.80 22.43 0.43
175 11.49 27.76 0.41
200 13.56 32.67 0.41

TABLE IV
AVERAGE CPU TIME (IN MILLISECONDS) FOR MOTZKIN TREES,

M=Z+Z×M+Z×M×M. THE CPU TIME REQUIRED TO CALCULATE
THE PRE–COMPUTED TABLES IN OUR UNRANKING IS 690 MILLISECONDS.

previous version; and, in boustrophedonic order, it spends
about 40% of the CPU time of the previous version.

Sequences are done from unions and products, thus the
timing improvements have similar advantages.

On the other hand, we have also done some experiments
with classes that involve sets or cycles, for instance, we have
considered the so-called functional graphs defined by F =
Set(Cycle(T)) with T = Z×Set(T)). In such cases, our imple-
mentation takes similar CPU time than the previous examples,
except for the pre–computed tables about the counting of the
number of object for each size. In general, it takes more CPU
time when classes are described from sets and powersets.

The current implementation in MUPAD-COMBINAT does
not consider all admissible combinatorial operators as well as
restricted cardinalities in sets or powersets. We have added
some of these operators in our implementation. In particular,
we have considered admissible operators like

ϕ(B, card τ k)

where ϕ ∈ {Seq,Set,PowerSet}, τ ∈ {≤ / = / ≥} and
k ∈ N.

By the way, the required average CPU time for the im-
plemented operators is clearly competitive. Now one of the
following open problems is to develop more efficiently the
corresponding pre–computed tables of counting for powersets
and sets (see the described isomorphisms for powersets and
sets in Section II and the corresponding relation of ordinary
generating functions for counting in Table I).

Appendix details the used operators and specifications about
our implementation.

IV. CONCLUSIONS AND FUTURE WORK

We have implemented in MUPAD the unranking applied
to some basic unlabeled and labeled admissible combinatorial
operators: disjoint unions, Cartesian products, and sequences.
We are now working on the implementation for (unlabeled)

powersets and sets (with and without restricted cardinalities)
and cycles.

Our implementation is making two main improvements for
the unranking of unlabeled and labeled admissible classes
in front of the implementation in the package MUPAD-
COMBINAT. First, we have significantly reduced the average
CPU time required to generate a random unranking. Second,
we are programming more unlabeled admissible combinatorial
operators (powersets and sets with and without restricted
cardinalities).

Future work is to implement even more unlabeled admis-
sible combinatorial operators (substitution, the open problem
for unlabeled cycles, the union among non-disjoint classes, the
intersection among classes, etc.).

Another line of research is to study and implement rank-
ing, random generation and exhaustive generation problems
described in Section I [34], [19], [23].

On the other hand, it is also interesting to implement similar
algorithms for other programming languages as MAPLE,
SageMath, C++ or Python, among others.

Moreover, note that these algorithms are also able to develop
some structures useful to generate molecules [8], [9] applied
to chemistry and influence graphs [24] applied to game theory
and social networks, among other topics [29], [36], [7], [13],
[33], [1], [5].

Finally, to what we know, it is still open to study the
unranking, ranking and exhaustive generation of combinatorial
structures using genetic algorithms [22], [32], (meta-)heuristic
algorithms [31], [30], [16] or parellel programing [3].

V. APPENDIX

A decomposable combinatorial class can be recursively
builded from basic classes using a constructor. The basic
classes that we use (and on which other classes are builded)
are the following:
• Epsilon(A): a class containing a single object of size 0.
• Atom(A): a class containing a single object of size 1.
• Z: equivalent to Atom(Z); standard nomenclature for the

definition of Atom.
The avaiable constructors for the building of new classes

are:
• Union(A, B, ...): disjoint union of the classes A, B, ...
• Prod(A, B, ...): partitional product of the classes A, B, ...
• BoxedProd(A, B, ...): (only valid for labeled structures)

similar to Prod, but forcing the smallest label to be in the
leftmost class (or rightmost).

• Sequence(A): all sequences of elements of A, where A
should not contain elements of size 0.

• Set(A) / MultiSet(A): all sequences of elements of A with
possible repetitions, where A should not contain elements
of size 0.

• PowerSet(A): (only valid for unlabeled structures5) all
sequences of elements of A without repetitions, where
A should not contain elements of size 0.

5Used in labeled structures, PowerSets behaves as Set(A) / MultiSet(A),
because it allows repited elements but with different labeling. So, PowerSet
only makes sense used with unlabeled structures.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 113

• Cycle(A): all directed cycles of elements of A without the
void cycle, where A should not contain elements of size
0.

• Alias(A): an alias for the class A.

A combinatorial specification is a list (or a set or a table)
of some productions of the form A =< rhs >, where A
is the name of the class being defined, and < rhs > is an
expression that involves elementary classes, constructors and
other classes. A is known as non-terminal.

With this basis, we have been able to generate some
solutions and their implementation to the following problems:

• Standard Specification Generation: given a class specifi-
cation, obtain the same specification in the standard CNF
(Chomsky Normal Form).

• Ranking: given a combinatorial class A and an object of
this class, calulate its rank (according to a specific order)..

• Unranking: given a combinatorial class A and a size n,
generate the n-th object of the objects of the class A
(according to a specific order).

We studied the problem of generating a standard specifi-
cation via the creation of a specification in the standard CNF
format, which is a standard for the representation of grammars.
A context free grammar is represented in CNF if (and only
if) all of its production rules are of the form:

• A → BC or
• A → α

where A, B and C are non-terminal symbols6, and α is a
terminal symbol 7. Either B or C can be the initial symbol.

In our solution, and to be coherent with the previous version
in MUPAD implementation, we allow users to introduce
any set, list or equation table as a specification. After that,
we analyze that specification through an specially created
auxiliary table filled with our set of allowed constructors. Any
specification using a constructor not present in this table will
be rejected. In addition, this table saves additional information
that can be useful to determine if a specification is correct or
no

Our specification consider three cardinality restrictions:
MinLength -minimum cardinality-, Length -exact cardinality-
and MaxLength -maximum cardinality-. We also use Union
and Product in non-binary expressions. For example, we
consider the specifications B = Union(A, B, C) and T =
Prod(Z, Z, Z, Z) which are internally transformed into binary
expressions for eficency purposes.

At this point we are ready to use our interface to obtain a
standard specification. The list of accepted parameters to our
function includes:

• spec: this parameter contains the specification introduced
by the user.

• label: this boolean parameter marks the class as labeled
(TRUE) or unlabeled (FALSE). Default value is FALSE.

6A non-terminal is a symbol that maps a grammar production and can
generate strings by replacing both non-terminal and terminal symbols, or a
combination of both

7A terminal is a symbol that represents a constant value, and therefore can
not be decomposed.

• boustrophedonic: this boolean parameter indicates the
order for the atom generation. FALSE is used for lex-
icoraphic order and TRUE for boustrophedonic.

We have two possible outputs from this function:
1) An error, shown as a small text indicating which criteria

has been violated by the given specification.
2) A table that contains information about the given spec-

ification introduced by the user, the order, and case
unlabeled or labeled. Note that the given specification
is in standard form, i.e., in CNF.

Below you can see some examples of the use of the
interface:

1) Specification of a generic atom
Input

ToGenerateStandardSpecification
({A = Atom()}, FALSE, FALSE);

Output
table({A=Atom()}=table(
A=Primitive(1,A),
Z=Primitive(1, Z)),
MainNonTerminal=A,
BoustrophedonicOrder=FALSE,
labeled=FALSE)

2) Specification of unlabeled binary trees in lexicographic
order
Input

ToGenerateStandardSpecification
({B=Union(Z,Prod(B,B))}, FALSE,
FALSE);

Output
table({B=Union(Z,Prod(B,B))}=table(
sub1=Prod(B,B),
B=Union(Z,sub1),
Z=Primitive(1, Z)),
MainNonTerminal=B,
BoustrophedonicOrder=FALSE,
labeled=FALSE)

Once we have our standard specification, we can unrank an
object of the specified class. To do this, we have implemented
an interface which admits the following parameters:
• spec: a standard specification.
• size: an integer parameter (different from 0), that indicates

the size of the objects to generate.
• rank: an intger parameter (between 1 and the number

of objects of size size in the class), which indicates the
position in the class of the object to generate.

Some examples of the use of this function are shown below:
1) Generation of the first unlabeled binary tree in lexico-

graphic order of size 4.
Input

bn := ToGenerateStandardSpecification
({B=Union(Z,Prod(B,B))}, FALSE,
FALSE);

funcioUnrank(bn, 4, 1);

Output
Prod(Z, Prod(Z, Prod(Z, Z)))

2) Generation of the third labeled binary tree in lexico-
graphic order of size 3.
Input

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 114

bn := ToGenerateStandardSpecification
({B=Union(Z,Prod(B,B))}, TRUE,
FALSE);

funcioUnrank(bn, 3, 3);

Output
Prod(Z(3), Prod(Z(1), Z(2)))

REFERENCES

[1] F. Krief A. Amraoui, B. Benmammar. Cognitive radio resource man-
agement using multi-agent systems, auctions and game theory. WSEAS
Transactions on Computers, 13(41):463–475, 2014.

[2] MuPAD-Combinat – open-source algebraic combinatorics package
for the computer algebra system MUPAD. URL: http://mupad-
combinat.sourceforge.net/.

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. The MIT Press, The Massachusetts Institute of Technology,
1990.

[4] C. Creutzig and W. Oevel. MUPAD Tutorial. SciFace Software
(SciFace), Paderborn, 2004.

[5] A. Hulková E. Milkov´ a. Algorithmic and logical thinking development:
Base of programming skills. WSEAS Transactions on Computers,
12(2):41–51, 2013.

[6] S. Even. Combinatorial Algorithms. MacMillan, New York, 1973.
[7] J. Ma F. Wu. The stability, bifurcation and chaos of a duopoly game

in the market of complementary products with mixed bundling pricing.
WSEAS Transactions on Mathematics, 13(35):374–384, 2014.

[8] P. Flajolet and B. Salvy. Computer algebra libraries for combinatorial
structures. J. Symbolic Computation, 20:653–671, 1995.

[9] P. Flajolet, B. Salvy, and P. Zimmermann. Lambda-upsilon-omega: The
1989 cookbook. Technical Report 1073, INRIA, 1989.

[10] P. Flajolet and R. Sedgewick. The average case analysis of algorithms:
Counting and generating functions. Technical Report 1888, INRIA,
1993.

[11] P. Flajolet and J.S. Vitter. Average-case Analysis of Algorithms and
Data Structures. In J. Van Leeuwen, editor, Handbook of Theoretical
Computer Science, chapter 9. North-Holland, 1990.

[12] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the
random generation of combinatorial structures. Theoretical Computer
Science, 132(1):1–35, 1994.

[13] A. Ma J. Ma. Research on the revenue-sharing mechanism based on
the price game of retailers. WSEAS Transactions on Mathematics,
13(47):484–492, 2014.

[14] D.L. Kreher and D.R. Stinson. Combinatorial Algorithms: Generation,
Enumeration and Search. CRC Press LLC, 1999.

[15] Greg Kuperberg, Shachar Lovett, and Ron Peled. Probabilistic existence
of regular combinatorial structures. CoRR, abs/1302.4295, 2013.

[16] M.A. El-Sharkawi K.Y. Lee. Modern Heuristic Optimization Techniques:
Theory and Applications to Power Systems. Wiley-IEEE Press.

[17] J. Liebehenschel. Ranking and unranking of lexicographically ordered
words: An average-case analysis. J. of Automata, Languages and
Combinatorics, 2(4):227–268, 1997.

[18] J. Liebehenschel. Ranking and unranking of a generalized dyck language
and the application to the generation of random trees. In The Fifth
International Seminar on the Mathematical Analysis of Algorithms,
Bellaterra (Spain), 1999.

[19] A. Lorenz and Y. Ponty. Non-redundant random generation algorithms
for weighted context-free languages. Theoretical Computer Science,
Elsevier, 2013, Generation of Combinatorial Structures, 502:177–194,
2013.

[20] C. Martı́nez and X. Molinero. A generic approach for the unranking of
labeled combinatorial classes. Random Structures & Algorithms, 19(3-
4):472–497, 2001.

[21] C. Martı́nez and X. Molinero. Efficient iteration in admissible com-
binatorial classes. Theoretical Computer Science, 346(2–3):388–417,
November 2005.

[22] M. Mitchell. An Introduction to Genetic Algorithms (Complex Adaptive
Systems). The MIT Press.

[23] X. Molinero. Ordered Generation of Classes of Combinatorial Struc-
tures. PhD thesis, Universitat Politècnica de Catalunya, November 2005.

[24] X. Molinero, F. Riquelme, and M. J. Serna. Cooperation through social
influence. European Journal of Operation Research, 242(3):960–974,
May 2015.

[25] MUPAD: The computer algebra system. URL:
http://es.mathworks.com/discovery/mupad.html.

[26] A. Nijenhuis and H.S. Wilf. Combinatorial Algorithms: For Computers
and Calculators. Academic Press, Inc., 1978.

[27] J.M. Pallo. Enumerating, ranking and unranking binary trees. The
Computer Journal, 29(2):171–175, 1986.

[28] E.M. Reingold, J. Nievergelt, and N.Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall, Englewood Cliffs, NJ, 1977.

[29] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of
Algorithms. Addison-Wesley, Reading, MA, 1996.

[30] E. Talbi. Metaheuristics: From Design to Implementation. Wiley.
[31] P. Vasant. Meta-Heuristics Optimization Algorithms in Engineering,

Business, Economics, and Finance. IGI Global.
[32] R. Keller W. Banzhaf, P. Nordin and F. Francone. Genetic Programming

An Introduction. San Francisco, CA: Morgan Kaufmann, 1998.
[33] J. Ma W. Si. Corporation in a closed-loop supply chain based on

remanufacturing. WSEAS Transactions on Mathematics, 12(4):482–490,
2013.

[34] Y. Wei. The grouping combinaton generating algorithm. In Proceedings
of the International Conference on Computer, Network Security and
Communication Engineering (CNSCE 2014), pages 670–674, 2014.

[35] H.S. Wilf. East side, west side ... an introduction to combinatorial
families- with MAPLE programming. Technical report, 1999. URL:
http://www.cis.upenn.edu/˜wilf/lecnotes.html.

[36] J. Ma Y. Yang. Complexity analysis in evolutionary game system in the
real estate market. WSEAS Transactions on Mathematics, 13(9):79–94,
2014.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 115

